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Abstract

This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The
construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and
dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at
the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gas­
kinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present
method. Numerical examples for both one dimensional (10) and two dimensional (20) compressible viscous flows are
presentedto demonstrate the accuracy and shock capturing capability of the current RKDG method.
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1. Introduction

In the past decades, both the finite volume (FV)
and the discontinuous Galerkin (DG) finite element
methods have been successfully developed for the
compressible flow simulations. Most FV schemes use
piecewise constant representation for the flow vari­
ables and employ the reconstruction techniques to
obtain high accuracy. A higher-order scheme usually
has a larger stencil than a lower-order scheme, which
makes it difficult to be applied on unstructured mesh
or complicated geometry. For the DO method high­
order accuracy is obtained by means of high-order
approximation within each element, where more
information is stored for each element during the
computation. The compactness of the DO method
allows it to deal with unstructured mesh or com­
plicated geometry easily. Now the DO method has
served as a high-order method for a broad class of
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engineering problems (Cockburn et aI., 2000).
For viscous flow problems, many successful DO

methods have been proposed in the literature, such as
those by Bassi and Rebay (1997), Cockburn and Shu
(1998), Baumann and Oden (1999), and many others.
In Arnold et al. (2002), a large class of discontinuous
Galerkin methods for second-order elliptic problems
have been analyzed in a unified framework. More
recently, van Leer and Nomura (2005) proposed a
recovery-based DO method for diffusion equation
using the recovery principle. This method has deep
physical insight in the construction of a DO method
for convection-diffusion problem.

The RKDG method for non-linear convection­
dominated problems was first proposed and studied
by Cockburn and his collaborators in a series of
papers (Cockburn et aI., 1989a; 1989b; 1990; 1998;
1998), see Cockburn et a1. (2001) for a review of the
method. The excellent results obtained by the high­
order accurate RKDG method demonstrated itself as a
powerful tool in the computational fluid dynamics.
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(1)

Recently, the gas-kinetic RKDG method proposed by
Tang and Warnecke (2005) has been shown to be very
accurate and efficient for inviscid flow simulations.

In this paper, a RKDG method for the viscous flow
problems based on a gas-kinetic formulation will be
presented. Instead of treating the convection and dis­
sipation effects separately, we use the gas-kinetic
distribution function with both inviscid and viscous
terms in the construction of the numerical flux at the
cell interface. Due to the intrinsic connection between
the gas-kinetic BGK model and the Navier-Stokes
equations, the Navier-Stokes flux is automatically
obtained by the RKDG method. The numerical dis­
sipation introduced from the discontinuity at the cell
interface is favored by the inviscid flow calculation,
especially for the capturing of numerical shock fronts.
For viscous flow problems, it should be avoided
because the artificial viscosity from the discontinuity
deteriorates the physical one Xu (200 I). A simplified
gas-kinetic relaxation model, which plays the role of
recovering the continuity of the flow variables from
the initial discontinuous representation, will be used
in the present method. In Xu (2004), the DG-BGK
method has been developed which gives accurate
solutions in both high and low Reynolds number flow
simulations. The principle of the present RKDG
method in the construction of the viscous numerical
flux is similar to that of the DG-BGK method but
with some significant simplification. The RKDG
method uses Runge-Kutta or TVD-RK Shu and Osher
(1989) method for the temporal discretization and the
DG-BGK method integrates the viscous flow equ­
ations in time directly. TIle RKDG method simulates
the viscous flows more accurately than the DG-BGK
method as demonstrated by the numerical tests.

2. Runge-kutta discontinuous galerkin method

2.1 RKDG method based on gas-kinetic framework

In the RKDG method Cockburn (200 I), a high­
order approximate solution inside a cell is updated
automatically and limited carefully to enforce the
stability and suppress the numerical oscillations. In
this section, we will present the RKDG method for
the Navier-Stokes equations by incorporating the gas­
kinetic formulation.

For a ID flow, the BGK model in the x-direction is
Bhatnagar et a1. (1954):

!,+ul,=g-I
t:

where u is the particle velocity, I is the gas
distribution function, and g is the equilibrium state
approached by I. The particle collision time t: is
related to the viscosity and heat conduction
coefficients. The equilibrium state is a Maxwellian
distribution,

(2)

where p is the density, U is the macroscopic
velocity, and A is related to the gas temperature T
by A = m/2kT , where m is the molecular mass,
and K is the Boltzmann constant. The total number
of degree of freedom K in ¢ is equal to
(5 - 3y)/(y -I) + 2. In the above equilibrium state
g, ¢2 is equal to ¢2 = ¢,2 + ¢: + ... + ¢; . The
relation between the macroscopic variables and the
microscopic distribution functions is

W =(p,pU,pE)' = ftftldud¢ =ftftgdud¢ (3)

where tft is the vector of moments tft =

(I,u,(u 2 + ()/2)' . Based on the above BGK model,
the corresponding Navier-Stokes equations can be
derived by Chapman-Enskog expansion up to the first
order of t .

For ID Navier-Stokes equations W, + G, = 0 ,
where G = futftldud¢, if we express the approximate
solution Wh(x,t) as

t:

Wh(x,t) = I w,1 (t)tft,'(x), lor XEJ" (4)
1:::.0

then we can get the following system by a Galerkin
method:

In the following, we will denote the method by the
P' scheme if the approximate solution is appro­
ximated by a k th-order polynomial. In order to
construct a simple formula of the numerical flux for
the RKDG method, we consider the hybridization of
the loss and gain terms in a gas distribution function
in the present work. As shown in Xu (1998), for the
Navier-Stokes solutions the distribution function at
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where s' and g are the equilibrium states at the
left and right hand sides of the cell interface. The
distribution function .l due to the collision effect
can be constructed as

where fa is the initial distribution function, which is
also the so-called kinetic flux-vector splitting Navier­
Stokes (KFYS-NS) distribution function Chou and
Baganoff (1977). .l is the distribution function due
to the collision effect, and I] is the relaxation
parameter to determine the speed that a system
evolves into an equilibrium state and should be a
function of local flow variables. In this paper, we
construct lJ as

2.2 Limiting procedure and boundary conditions

we have determined all parameters in the distribution
functions fa and f... After substituting Eqs. (7), (8)
and (9) into Eq. (6), we can get the gas distribution
function f at the cell interface, then the numerical
flux can be obtained by taking the moments u¢ to it.
In order to get the heat conduction correct, the energy
flux in Eq. (6) can be modified according to the
realistic Prandtl number Xu (200 I).

The present RKDG method can be easily extended
to multidimensional cases. There are two approaches
that can be used to construct the numerical flux: one
is the directional splitting method Xu (200 I) and the
other is the fully multidimensional method Xu (2005).
In this paper we employ the less costly splitting
method to construct the flux at the cell interfaces for
efficiency and simplicity consideration. The proce­
dure is similar to ID case and we omit the details here.

For the compressible flow simulations by the
RKDG method, the direct update of the numerical
solution will generate numerical oscillations across
strong shock waves. In order to eliminate these os­
cillations, the non-linear limiter, usually used in the
FY method, has to be used in the RKDG method as
well. In this paper, in ID case, we use the Hermite
WENO limiter Qiu and Shu (2004) proposed by Qiu
and Shu recently. In 2D case, for the rectangular
elements a similar limiting procedure to that in
Cockburn (1998) is employed. For both ID and 2D
cases, the componentwise limiting operator is used
after each Runge-Kutta or TVD-RK Shu and Osher
(1989) inner stage.

Now we describe the treatment of boundary con­
ditions. For the adiabatic wall, the no-slip boundary
condition for the velocity field is imposed by re­
versing the velocities in the ghost cell from the sate in
the internal region, and the mass and energy densities
are put to be symmetric around the wall Xu (200 I).
For the isothermal wall, where the boundary tem­
perature is fixed, we use the condition of no net mass
flux transport across the boundary Xu (200 I) to cons­
truct the flow states in the ghost cell, and their spacial
derivatives are calculated from the data around the
wall by appropriate approximation consistent with the
accuracy requirement, for example the parabolic re­
construction with the flow states around the wall is
used for p' scheme. At the inflow/outflow boun­
daries, the flow states at the external boundary are

(6)

(7)

(8)
x :'>0,

X~O,

f = [1-1] ]j~ + I].l

_{gl(.! + a'x- r(a'u + A'),

fa - '(1 r (' A'·)g +ax-rau+ ,

the cell interface can be constructed as

where P;~'2 are the left and right values of pressure
p at the cell interface X',1I2' C is a problem­
dependent positive constant, which ranges from 103

to 103 in our computation.
In the FY BGK method Xu (200 I), the initial

macroscopic flow states around the cell interface are
reconstructed by the MUSCL-type interpolation. But,
for the RKDG method, they are updated inside each
cell. In the following, Xi • lI , = 0 will be used for
simplicity. With the initial macroscopic flow states on
both sides of a cell interface, to the Navier-Stokes
order the initial gas distribution function fa is
constructed as

where H[u] is the Heaviside function, and go is a
local Maxwellian distribution function located at
x =0 . The calculation of the parameters a'", A'" in
fa and s-, A in go is similar to that in Xu
(200 I), we omit the details to save space here.

For the Navier-Stokes solutions, the viscosity and
heat conduction coefficients are related to the particle
collision time r. With the given dynamical viscosity
coefficient u , the collision time can be calculated by
t = p/ p , where p is the pressure. Up to this point,
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computed from the available data and Riemann

invariants, the spacial derivatives there are also

obtained by appropriate approximation with the given
boundary condition.

3. Numerical experiments

The present RKDG method will be tested in both

ID and 2D problems. We use the two-stage TVD-RK

time stepping method Shu and Osher (1989) for pi
case and the three-stage one for both p' and p3
cases, the CFL number is 0.2 for pi case and 0.15
for p' case.

3.1 Accuracy test

The first test is to solve the Navier-Stokes equa­

tions with the following initial data,

convergence rates. The results are shown in Tables 1­

3. From these results we can easily see that a

( k + 1)th-order convergence rate can be obtained for

p' (k =1,2,3) case for smooth enough solutions.

3.2 COlletteflow

The Couette flow with a temperature gradient

provides a good test for the RKDG method to

describe the viscous heat-conducting flow. With the

bottom wall fixed, the top boundary is moving at a

speed U in the horizontal direction. The temperatures

at the bottom and top are fixed with values 1;, and

T, . Under the assumption of constant viscosity and
heat conduction coefficients and in the incompre­

ssible limit, a steady state analytical temperature

distribution can be obtained,

p(x,O) = I + 0.2sin(:rx), U(x,O) = 1, p(x,O) = 1 (10)
T-To =I.+ PrEc 1:..(1-1:..),
~-1;, h 2 H H

(11)

The dynamical viscosity coefficient is taken as

Jl =0.0005 . The Prandtl number is Pr =2/3 and
the specific heat ratio is r = 5/3 . The computational

domain is x E [0,2] and the periodic boundary

condition is used. We compute the viscous solution up

to time t = 2 with a small time step to guarantee that

the spatial discretization error dominates. No limiter

is used in this case. Since there is no exact solution

for this problem, we evaluate the numerical error

between the solutions by two successively refined

meshes and use the error to estimate the numerical

Table I. The error and convergence order for pi case.

N L""-error Order £I-error Order £'-error Order
10 ::1.05£-2 1.76E-2 1.99E-2
20 5.68E-3 2.-12 336r~3 2.39 3.79E-3 2.39
40 1.03£-3 2.46 6.31E-4 2.41 7.07E-4 2.42
80 2.08£-4 2..31 1.28E-4 2.30 1.44E-4 2.30

Table 2. The error and convergence order for p' case.
N L"'-error Order £I-error Order £2-error Order
10 2048E-3 l.51E-3 1.62E-3
20 2.76E-4 3.16 l.66E-4 3.18 1.86E-4 3.12
40 2.50E-5 3.47 l.54E-5 3.43 1.73E-5 3.42
80 2.54£-6 3.30 1.47E-6 3.39 1.64E-6 3.40

Table 3. The error and convergence order for p3 case.

N L""'-error Order LI-error Order £2-error Order
10 9.05£-5 5.37£-5 5.67£-5
20 8.89£-6 3.35 4.23£-6 3.67 4.90E-6 3.53
40 4.90£-7 4.18 2.81£-7 3.91 3.17E-7 3.95
80 3.26£-8 3.91 1Jl2£-8 4.30 1.70£-8 4.22

where H is the height of the channel, Pr is the Prandtl
number, Ec is the Eckert number Ec = U' /

[CI'(~ - 1;,)], and CI' is the specific heat at constant
pressure. The results without limiter are shown in

Figs. 1-2. From these figures, we see that the

numerical results recover the analytical solutions very

well with the variations of all these parameters, and

the Prandtl number fix does modify the heat

conduction term correctly. It is also clearly shown that
the higher-order P' scheme gives more accurate

solutions than the lower-order pi scheme with the

same mesh size. If we further refine the mesh, the

difference between the numerical solution from pi
and p' cases is indistinguishable and both accur­

ately recover the analytical solution.

3.3 Navier-Stokes shock structure

The test is the Navier-Stokes shock structure cal­

culation. Although it is well known that in the high
Mach number case the Navier-Stokes solutions do not

give the physically realistic shock wave profile, it is

still a useful case in establishing and testing a valid
solver for the Navier-Stokes equations. The shock

structure calculated is for a monotonic gas with

y = 5/3 and a dynamical viscosity coefficient

Jl - TO', where T is the temperature. The upstream

Mach number M'=1.5 and the Prandtl number Pr> 2/3

are used in this test. The dynamical viscosity

coefficient at the upstream keeps a constant value
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J1-x = 0.0005. The results calculated by the second­
order pi case are presented in Fig. 3 and those by
the third-order p2 case are shown in Fig. 4. From
these results, we can see that the shock structure is
calculated accurately with a reasonable number of
grid points inside the shock layer. Moreover, the
third-order scheme gives more accurate results than
the second-order scheme, especially in the normal
stress and heat flux solutions.

3.4 Laminar boundary layer

The next numerical example is the laminar
boundary layer over a flat plate with the length L. The
mach number is M=0.2 and the Reynolds number
based on the upstream flow states and the length L is
Re =105

• A non-uniform rectangular mesh with
120x 30 cells is used, see Fig. 5. We have compared
the numerical results with the theoretical ones given
by the well-known Blasius formulae in case of

incompressible flow. The U velocity distributions
along three different vertical lines are shown in Fig.6.
From these figures, we can see that the numerical
solutions by both pi and p2 schemes recover the
theoretical solution accurately, even with a few grid
points in the boundary layer.

3.5 Shock boundary layer interaction

The final test deals with the interaction of an
oblique shock with a laminar boundary layer. The
shock makes a 32.60 angle with the wall, which is
located at y=O and x ~ 0 , and hits the boundary layer
on the wall at X, = 10. The Mach number of the
shock wave is equal to 2 and the Reynolds number
based on the upstream flow condition and the
characteristic length X, is equal to 2.96 x IDs. The
dynamical viscosity J1 is computed according to the
Sutherland's law for the gas with r = 1.4 and
Pr=O.72. The pressure contours computed by the pi
and p2 schemes are presented in Fig. 7. As expected,
the p2 scheme gives a shaper numerical shock
transition than that from pi scheme due to the less

Pr=1.Q
temperature

~o 5 / Pr=O.72
t;;4

~
/

:~
~
~

0 01 02 0.3 04 05 06 07 0.8 09
y/H

Fig.!. Couette flow, r =5/3. Ec =50, '+' -- p' case, '0'-- P'

case.
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Fig. 6. U velocity distributions along three vertical lines, left
pi ,right P'.

Fig. 7. Shock boundary interaction, 30 equally spaced con­
tours of pressure pi p.; from 0.997 to 1.411 by p' (left)
and p' (right) cases.
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Fig. 5. Mesh(left) and U velocity contours(right) by p'
case.

numerical dissipation introduced by weaker discon­
tinuities at the cell interfaces. The skin friction and

pressure distributions at the plate surface are shown in
Fig. 8, where a fair agreement with the experimental
data Hakkinen et al. (1959) is obtained for both pi
and p2 schemes. Our numerical results are com­
parable with those in Ohwada and Fukata (2006).
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4 Conclusion

Fig, 8. Shock boundary interaction, skin friction coefficient
(left) and pressure (right) distributions at the plate surface.

In this paper, a RKDG method for the viscous flow

computation has been presented. The construction of

the RKDG method is based on a gas-kinetic for­

mulation, which combines the convective and dis­

sipative terms in a single gas distribution function.

Due to the intrinsic connection between the gas­

kinetic BGK model and the Navier-Stokes equations,

the Navier-Stokes flux is automatically obtained by

the method. The current RKDG method has good

shock capturing capacity, where the numerical

dissipation introduced from the numerical flux at the

cell interface is controlled adaptively by a hybrid

parameter in the current approach. The RKDG

method works very well for all test cases presented.

The higher-order pO scheme does give a more

accurate solution than that from the lower-order pi
scheme, especially in the well-resolved cases. In

terms of the computational cost, the present RKDG

method is more expensive, especially in the multi-
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dimensional cases, than the finite volume gas-kinetic

BGK method for the Navier-Stokes equations. An
implicit version of the DG method is under

consideration for the efficiency purpose. Like many

other DG methods, for the flow with discontinuities

the overall performance of the scheme depends

strongly on the limiters used.
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